
Kinematic planning under Nonholonomic Constraints

Shambhuraj Anil Mane

October 30, 2023

Abstract

This report presents the results of implementing a kinematic path planner to
park three vehicles of increasing complexity into a tight space. The vehicles - a
delivery robot, car, and truck with trailer - each have different steering constraints.
A simulated 2D environment was created with obstacles, and configurations space
was modeled accounting for nonholonomic constraints. Custom path planning al-
gorithms generated feasible paths satisfying kinodynamic constraints to maneuver
each vehicle from a start position into the target parking spot. The planned paths
are presented along with snapshots visualizing the parking maneuvers. Though sim-
plistic, this project demonstrates automated parking for nonholonomic vehicles in
cluttered environments.

Figure 1: Autonomous Parking Simulation

1



1 Introduction

This project involves developing path planning algorithms to park vehicles in a cluttered
environment. The objective is to maneuver three vehicles - each with different steering
constraints - from a start position to a tight parking spot, while avoiding collisions. This
is a common challenge faced by autonomous vehicles operating in urban environments.

The simulated 2D world consists of a parking lot with obstacles flanking the target
parking space on two sides. Additionally, there are multiple obstruction in the middle of
the lot. The vehicles must navigate around these obstacles and utilize their full range of
steering motion to efficiently park in the compact spot.

The three vehicles of increasing complexity are:

• Delivery robot: Differential drive/skid steering

• Car: Ackermann steering

• Truck with trailer: Ackermann steering plus trailer kinematics

Each vehicle has kinodynamic constraints in the form of nonholonomic constraints dic-
tated by its steering mechanism. The path planner utilizes a hybrid A* algorithm which
takes into account these constraints to generate feasible trajectories.

This project demonstrates automated parking for vehicles with different steering con-
figurations in a constrained space using a custom motion planning algorithm.

Figure 2: Three types of Vehicles

2



2 Methods

The path planning approach taken involves using a hybrid A* search algorithm to generate
optimal trajectories for parking each vehicle. This extends the traditional A* graph search
by incorporating kinodynamic constraints in the cost function.

• Simulation

The complete parking scenario was simulated using pyplot as well as ROS2 and
Gazebo. Pyplot provided ease in visualizing and working on algorithms in 2D en-
vironment and ROS2 provided the infrastructure for controlling the vehicles and
visualizing the environment. Gazebo handled the physics simulation and rendering.

• Collision Checking

Continuous spaces are mathematically challenging to work with, especially when
planning paths and performing collision checks. Discretizing the space simplifies
the problem by dividing it into smaller, manageable states. It allows the algorithm
to check for collisions with obstacles by examining a finite number of states, rather
than continuously evaluating the entire continuous space.

• Discrete Motion Planning with Nonholonomic Constraints

Kinodynamic planning is crucial for vehicles and robots with non-holonomic con-
straints, such as cars, or robots with differential drive systems. These systems
cannot instantly change their velocity or direction and have specific dynamics that
must be considered to plan feasible trajectories. The diagram and explanation on
this topic is given in the appendix section.

• Hybrid A-star algorithm

The path planning approach taken involves use of a hybrid A* search algorithm to
generate optimal trajectories for parking each vehicle. This extends the traditional
A* graph search by incorporating kinodynamic constraints in the cost function.

At each iteration, the algorithm considers reachable configurations based on the
vehicle’s kinematics. It selects the lowest cost node based on the A* evaluation
function: f(n) = g(n) + h(n). The function g(n) represents the path cost from
start to node n, while h(n) estimates the cost to reach the goal. The kinodynamic
constraints are encoded in g(n) to prune infeasible motions.

This process repeats, expanding nodes until the goal is reached. The optimal path
minimizing traversal cost while satisfying steering constraints is then extracted. This
path is converted to a time-parameterized trajectory using the kinematic model.

The complete scenario is simulated in matplotlib and ROS2 with Gazebo managing the
physics and visualizing the environment.

3



3 Results

The hybrid A* path planner successfully generated collision-free trajectories to park all
three vehicles in the allotted space.

For the delivery robot, a smooth path was produced utilizing the differential drive
constraints to neatly maneuver around the obstacles to the goal position. The planned
path is shown in Figure overlaid on the environment map.

The sedan also navigated the cluttered parking lot efficiently as seen in Figure. The
Ackermann steering constraints resulted in wider turns compared to the delivery robot.

Parking the truck with trailer was most challenging due to the trailer kinematics. The
planner accounted for these constraints and planned a feasible path to the goal as shown
in Figure. Executing the maneuver required careful tuning of velocities and accelerations.

All vehicles managed to avoid collisions and navigate within their steering limitations.

Figure 3: Planned path in all three scenarios

Cost functions have been instrumental in the path planning process. Even minor al-
terations in their values have had a significant impact on factors such as path length,
exploration duration, and the number of directional changes.

The incorporation of heuristic costs effectively reduced exploration time, enabling the
path to converge to the goal point more swiftly. However, it’s worth noting that the

4



resulting path, while expedited, may not always be optimal in terms of both length
and directional adjustments. On the other hand, when the heuristic cost is disregarded
(hybridCost=0), it leads to more extensive space exploration, resulting in prolonged ex-
ploration times. Nevertheless, this approach tends to yield an optimized path in both
length and directional adjustments. The following figures serve as conclusive evidence of
the outcomes described above.

Figure 4: Planned path in all three scenarios

4 Conclusion

This project demonstrated successful path planning and control of various steered vehicles
for parking in tight spaces. Optimal, collision-free trajectories were generated taking into
account kinodynamic constraints of each vehicle model.

The hybrid A* motion planning algorithm was effective at producing smooth paths to
the goal in reasonable time. On average, parking was completed within 20-35 seconds for
the vehicles. The planner balances exploration of the configuration space with exploitation
of lowest cost paths. Further tuning of heuristic functions could improve planning times.

While the planned paths were optimal in terms of length, the trajectories could be fur-
ther optimized for time. Velocity profiles could be smoothed to minimize accelerations and
jerks. Dynamic constraints could also be incorporated within the kinodynamic framework
to generate time-optimal trajectories.

5



The system could be extended to more complex vehicles, tighter environments, and dy-
namic obstacles. Overall, this project demonstrated automated parking for nonholonomic
vehicles, achieving the objective efficiently using motion planning methods.

References

5 Appendix

All the points from method section are explained below in detail.

5.1 Simulation

Figure 5: Simulation structure

As shown in Fig. following points are considered in this project.

Initialization: Initial robot state along with the Initial simulation states ie. obstacle
positions were set.

Solution Check: Robot position at goal location and termination condition such as
reaching to goal location or path not found were checked.

Game logic: Is not used as only statis obstacles are considered in this project.

Collision Checking: Collisions given the current robot configuration and world state
were considered for collision free path planning.

Motion Planning: Motion planner is implemented using current robot state as input
and trajectory fro robot controller was calculated.

Kinodynamics: Considering the the different steering mechanisms which commands for
specific kinematics constraints and dynamic equations were considered in deciding the
algorithm.

6



Visualization: Animation frames for each iteration were created using simplified graphics
in Matplotlib as well as 3D visualization in Gazebo.

Simulation initialization stage images are shown below.

Figure 6: Simulation structure

7



5.2 Collision Checking

As shown in Fig. the environment is divided into Occupancy grid. Occupancy grids allow
you to represent the environment as a grid where each cell indicates whether it is occupied
by an obstacle or free space. This representation is particularly useful for motion planning
because it provides a structured way to model the environment’s obstacles and free areas.
A module scipy.spatial.KDTree in Python Scipy is used in this project.

Using a KD-Tree for occupancy grid data can be beneficial for tasks such as nearest-
neighbor search, collision checking, or other spatial queries. KD-Trees are a data structure
that can efficiently partition and organize your occupancy grid data.

Occupancy grids have advantages like, well suited for discrete planners, low storage/memory
requirements and tree can be utilized for better space and computational efficiency

Figure 7: Occupancy grid

5.3 Discrete Motion Planning with Nonholonomic Constraints

For static planners the C-space representation is sufficient which takes into account robot’s
position and orientation. State space (X) incorporates the dynamic state and extend C-
space by including time derivative of each dimension in the C-space. Working in state
space allows planner to incorporate dynamic constraints on path doubles the dimension-
ality of the planning problem. Holonomic and non-holonomic constraints are concepts
used in the field of mechanics and robotics to describe the constraints on the motion of
objects or systems. Planners must incorporate robot dynamics and model the relation-
ship between control inputs and state. These constraints may vary based on the specific
vehicle configuration.

• Modeling of Delivery robot: Differential drive/skid steering

Equations for modeling differential drive robot are shown in Fig.

8



Figure 8: Modeling of Delivery robot: Differential drive/skid steering

Car class was used to define the dimension of the car in algorithm for given car
model simulated in Gazebo environment.

class DiffBot:

speedPrecision = 4

wheelSeperation=0.287 * 5

botDiameter=0.32 * 5

wheelDiameter=0.066 *5

maxVelocity=2.0

minVelocity=1.0

stepSize=0.5

Calculations using these equations are shown below:

• Modeling of Car: Ackermann steering Equations for modeling differential drive robot
are shown in Fig.

Car class was used to define the dimension of the car in algorithm for given car
model simulated in Gazebo environment.

class Car:

maxSteerAngle = 0.6

steerPresion = 5

wheelBase = 2.58

axleToFront = 3.0

axleToBack = 0.4

9



Figure 9: Modeling of Car: Ackermann steering

width = 2.0

Calculations using these equations are shown below:

• Modeling of Truck with trailer:

Figure 10: Modeling of Truck with trailer

Ackermann steering plus trailer kinematics Equations for modeling differential drive

10



robot are shown in Fig.

Car class was used to define the dimension of the car in algorithm for given car
model simulated in Gazebo environment.

class CarWithTrailer:

maxSteerAngle = 0.6

steerPresion = 10

wheelBase = 2.58 [m] wheel base: rear to front steer

axleToFront = 3.0 [m] distance from rear to vehicle front end of vehicle

axleToHitch = 0.4

hitchToTrailer = 2.0

axleToBack = 0.4 [m] distance from rear to vehicle back end of vehicle

width = 2.0 [m] width of vehicle

RTF = 0.4 [m] distance from rear to vehicle front end of trailer

RTB = 4.0 [m] distance from rear to vehicle back end of trailer

Calculations using these equations are shown below:

5.4 Hybrid A-star algorithm

The Hybrid A* algorithm is a motion planning algorithm used in robotics to find collision-
free paths for vehicles or robots with non-holonomic constraints, such as cars. It combines
elements of both continuous and discrete state spaces, providing a compromise between
computational efficiency and precision in path planning.

The algorithm is as follows:

Following is the code for hybrid A star algorithm used for this project.

• Model and cost initialization for each vehicle.

• Initialization of hybrid A star algorithm

• While loop for Hybrid A star

• Calculating holonomic cost considering obstacles

• Holonomic node validity check (map bounds and collision)

• Motion commands for Differential robot

• Simulating kinematic motion (Motion primitive)

• Collision check of simulated node

• Simulated path cost

• Backtrack the lowest cost path

11



Figure 11: Hybrid A-star algorithm

Figure 12: Model and cost initialization for Differential robot

12



Figure 13: Model and cost initialization for car

Figure 14: Model and cost initialization for truck with trailer

Figure 15: Initialization of hybrid A star algorithm

13



Figure 16: While loop for Hybrid A star

Figure 17: Calculating holonomic cost considering obstacles

14



Figure 18: Holonomic node validity check (map bounds and collision)

Figure 19: Motion commands for Differential robot

Figure 20: Simulating kinematic motion (Motion primitive)

15



Figure 21: Collision check of simulated node

Figure 22: Simulated path cost

16



Figure 23: Backtrack the lowest cost path

17


	Introduction
	Methods
	Results
	Conclusion
	Appendix
	Simulation
	Collision Checking
	Discrete Motion Planning with Nonholonomic Constraints
	Hybrid A-star algorithm


