Reinforcement Learning for Short Range Path
Planning in Indoor Environment

Prasanna Natu
MS Robotics Engineering
pvnatu@wpi.edu

Shreya Bang
MS Robotics Engineering
srbang @wpi.edu

Shambhuraj Mane
MS Robotics Engineering
samane @wpi.edu

Vaibhav Kadam
MS Robotics Engineering
vkadam @wpi.edu

I. INTRODUCTION

Path planning of robot in an indoor environment is a crucial
task of autonomous navigation, where the robot subsequently
plans path from its initial state to a target state in a grid or
map. Many of the path planning algorithms are not actually
used on real-time robots due to its computational demands and
high dimensional problems. As the advancement in Robotics,
Deep Reinforcement Learning (DRL) provides a powerful tool
to provide optimal path planning in deterministic indoor envi-
ronments. In comparison of classical path planning algorithms,
reinforcement learning (RL) based approaches have received
significant attention in the recent past due to the success of
the deep learning.

We provide a report for the RL based path planning for short
range given a target state (pose). The robot is equipped with
a 2D Lidar sensor, RL-based path planner provides optimal
paths to given target pose independent of map environmennt.
Our contribution is to plan paths using Proximal Policy
Optimization (PPO) and Actor Critic (A2C) implementation.

" IE"EETEIL :

L}

] |
;;!f’“l

°
s
-
N

=
&7
[: =}

Bl 1

|

E_

Fig. 1. Gazebo Hospital Environment

II. LITERATURE REVIEW

Reinforcement learning (RL) has emerged as a promising
approach for robot path planning and navigation in recent
years. Compared to traditional path planning methods like
A*, RRTs, etc., RL does not require an explicit map of the
environment and can learn policies that generalize well to new
environments.

Q-learning is one of the most commonly used RL algo-
rithms. Faust et al. (2018)[1] proposed a hierarchical plan-
ning method for long-range navigation tasks, that combines

Fig. 2. Environment with Pioneer 3AT, a 4-wheel differential drive agent

sampling- based path planning(PRM) with RL agents to
complete tasks in very large environments. Which showed
that PRM-RL expands the capabilities of both RL agents and
sampling-based planners. The benefit here is that, although the
RL agent depends on the robot and the goal, it is not dependent
on the environment and can be used to create roadmaps for a
variety of contexts.

Policy gradient methods like PPO can handle continuous
action spaces and have also been applied for path planning.
Tai et al. (2017)[2] used PPO to train a policy for navigation in
simple 2D environments with continuous control of velocity
and steering angle. The policy was trained using only laser
scan data as input.

Imitation learning from expert demonstrations can speed up
training of navigation policies. Pfeiffer et al. (2017)[3] used
behavior cloning with CNNs to imitate an A* planner and
then fine-tuned the policy with RL. Demonstration was done
that the learned navigation model is directly transferable to
previously unseen virtual and, real-world environments. The
method outperformed learning from scratch.

The question of whether policies developed in simulation
using deep reinforcement learning could be used in the actual
world was explored by Tzeng E. (2017)[4]. As compared to
policies trained using sparse real-world data, he shows in his
research that vision systems trained on simulated data and
adapted using our technique may be utilized to initiate deep
visuomotor policies that achieve greater performance on real-
world tasks.

Key challenges for RL navigation include sample efficiency,

sim-to-real transfer, and integration with traditional methods
for complementary capabilities. Hybrid methods that combine
learning and classical planning are an active area of research.

III. METHODOLOGY
A. Environment Setup

In our study, we focus on training a reinforcement learning
(RL) agent to navigate short distances within a simulated
environment, specifically a hospital setting, without prior
knowledge of the space’s large-scale topology. This integrates
the RL agent into existing path planning algorithms as a
local planner. The environment is a 3D representation of a
hospital, complete with various objects and human figures,
and is simulated using Gazebo, which integrates seamlessly
with ROS2 Humble. Our chosen robotic platform is the
Pioneer 3AT, a four-wheeled robot equipped with a 180° laser
rangefinder providing 61 distance measurements ranging from
0.08 to 10 meters. This setup allows the robot to determine
its position in space relative to a fixed Cartesian system and
execute movement commands based on specified angular and
linear velocities.

The RL agent’s objective is to navigate to short-range goals
(up to 10 meters) within this simulated environment, avoiding
obstacles and fulfilling task constraints. The agent operates
under specific conditions: it limits its angular speed to [-1,1]
rad/s and linear speed to [0,1] m/s, with no backward motion.
Collision detection is crucial and is determined when any
laser measurement falls below 0.25 meters, considering the
robot’s geometry in relation to the laser’s position. The target
is defined as a point in the (x, y) space, and task completion is
acknowledged when the robot comes within 0.40 meters of the
target, a distance that accounts for the laser’s position ahead
of the robot’s center and an additional safety margin.

1) OpenAI-Gym Setup: The RL agent is developed and
trained using OpenAl Gym, an open-source toolkit that pro-
vides the necessary framework for creating a custom RL
environment. The 3D models of the hospital and the Pioneer
3AT, slightly modified to include the 180° laser. This setup
forms the foundation of our study, where the RL agent learns
to navigate effectively in a static environment, representative
of real-world conditions in a hospital setting.

Observation Space: Defined as a dictionary, it includes:

e Polar coordinates of the goal (r,6), with r € [0,60]

meters and 6 € [—m, 7] radians.

o LIDAR sensor data, o; for ¢ = 1,...,61, from the 180°

LIDAR sensor with a depth of up to 10 meters.

Action Space: A 2-dimensional continuous array:

o First element: Linear speed, within [0, 1] m/s.

e Second element: Angular speed, within [-1, 1] rad/s.

Reward Function: Implemented as a sparse reward strat-
egy, the reward r; at time ¢ is defined as: x*

1 if the goal is reached (r < 0.4),

ry = ¢ —1 if a collision occurs (min; 0; < 0.25), (1)

0 otherwise.

This design penalizes collisions and rewards goal attainment,
fostering a risk-neutral policy.
Step Method:
1) De-normalize the action to send the proper command to
the robot
2) Send velocity command to the robot
3) Spin the node to allow sensor updates via callbacks
4) Transform coordinates to get polar coordinates of goal
relative to robot
5) Get updated observation with laser readings and robot
location
6) Get additional environment info
7) Compute reward
8) Check if episode is finished based on:

¢ Reaching goal (distance < 0.4 m)
o Collision detected (laser reading < 0.25 m)

9) Return observation, reward, done flag, and info dict
Reset Method:
o Sample new start state:

— Randomly generate the initial state, including robot
pose and target location, for the new episode based
on a distribution. This introduces variety across
episodes.

e Reset simulation:

— Move the robot and update other entities in the
simulation to the new start state. This is done by
calling services and allowing time for the reset to
fully propagate.

« Initialize observation:

— Spin for sensor updates, transform coordinates, and
construct the observation using the reset state. This
creates the starting observation the agent sees.

e Return observation:

— The observation is returned to the RL training algo-
rithm so that the next episode can begin from the
sampled start state.

B. Learning Algorithms

We implement two methods, Proximal Policy Optimization
(PPO) and Actor Critic (A2C), to see which one works better
for making a robot move in a fixed environment. We’re using
LiDAR data to help the robot navigate in real-time.

Proximal Policy Optimization (PPO): PPO has been de-
signed to ensure that when updating the policy, the new policy
doesn’t deviate too far from the previous one. This is beneficial
because drastic changes in the current policy parameters can
lead to a significant drop in model performance, requiring
many timesteps to recover the previous state. PPO is an on-
policy algorithm applicable to both discrete and continuous
action spaces. It comes in two variants: PPO-clip and PPO-
penalty. We are concentrating on the first variant.

Note that the expectation is calculated over the state-action
pair (a, s), where “a” represents the action sampled from
the previous policy. A singular update is executed using

Stochastic Gradient Descent (SGD), offering an alternative to
traditional policy gradient descent. SGD significantly reduces
computational effort by taking multiple smaller steps to adjust
policy parameters. In each of these smaller steps, the gradient
is computed using a mini-batch, a smaller sample, rather than

considering all the sampled trajectories.

Let r,(g) = ~\tlst)
' 7o, (aelst)

following equation:

. The the objective of PPO is the

LEFIP(9) = Ky | min(ry(0) Ay, clip(re(0),1 — €, 1+ e)) Ay) 2)

1) Positive Advantage (A™* (s,a) > 0): If the advantage
of a state-action pair (a, s) is positive with respect
to the old policy m,, it is desirable to increase the
probability of that action when in states. In doing so,
the probability ratio M

7oy (als)
The second part of the minimum function sets a limit on
how much the probability ratio for a given state-action
pair can increase. If this ratio exceeds 1+ ¢, the clipped
objective is chosen because it is lower than the unclipped
one. This ensures that the growth in the likelihood of the
action is constrained. Conversely, if the new parameters
0 result in a policy that decreases the probability ratio
even below 1 — ¢, the unclipped term is selected. This
decision is logical as it leads to a lower value of L,
opposing the maximization goal of the algorithm. In
such cases, the reduction in the probability ratio is not
restricted.

will be greater than one.

eep A>0

Fig. 3. L-function with respect to the probability ratio when the advantage
A is positive

2) Negative Advantage (A" (s,a) < 0): It is convenient
to reduce the probability of the action a in state s when
the relative advantage is negative.

Similarly, in this scenario, the clipped objective con-
strains the reduction in the likelihood of the state-
action pair. When the probability ratio of the new policy
falls below 1 — ¢, the second term of the minimum
function is chosen, ensuring a controlled decrease in
the action likelihood. Conversely, if the ratio is positive,
the unclipped term is selected, allowing the penalization
of such a policy to be unbounded. It’s important to

note that, given the negative nature of the advantage,
increasing the likelihood of the action is undesirable.

L('L!P

Fig. 4. L-function with respect to the probability ratio when the advantage
A is negative

To ensure that the agent explores new states of the environ-
ment, an entropy bonus is incorporated into the loss function
L. The influence of this component can be controlled by
tuning the entropy coefficient. In essence, a higher coefficient
increases the likelihood that the agent favors a random action
rather than sampling from the current policy. As training
progresses, the entropy bonus diminishes, ensuring that the
agent’s behavior gradually converges towards its existing pol-
icy over time.

Further, to update the policy, we need information about the
on-policy value function. Since it involves an expectation, we
can calculate it using a suitable estimator. In the case of PPO,
an estimator with parameters is utilized, and these parameters
0 are adjusted at each step of the algorithm. The pseudocode
for the algorithm is provided below:

Algorithm 1 Q Actor Critic
Initialize parameters s, 0,w and learning rates ag, a,; sample a ~ mg(als).
fort=1...7:do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s,a)
Then sample the next action a’ ~ mp(a’|s’)
Update the policy parameters: 6 < 6 + Q. (s, a) Vg log me(als); Compute
the correction (TD error) for action-value at time t:
O =71t +YQuw(s,a') — Qu(s,a)
and use it to update the parameters of Q function:
W 4= W+ 00t Vo Quo (8, @)
Move to a < a’ and s « &’
end for

Algorithm 1 PPO-Clip
1: Define initial policy parameters 6
. for k=0,1,2,... do
Collect a set of trajectories Dy = 7;
Compute the rewards R(7;) for each episode i
Compute advantage estimate A™. with the current
value function V;_ (using any advantage estimation
method)
6: Update policy parameter by maximizing using the
Gradient Descent
7: Update the value function parameters ¢ by regression
on mean-squared error (using some gradient descent algo-
rithm)
8: end for

AN

Advantage Actor-Critic Network (A2C):

We implement actor critic network as it has following

advantages:

« Sequential Decision Making: Mobile robots often operate
in dynamic environments where they need to make a
sequence of decisions over time to achieve a goal. A2C,
being a sequential decision-making algorithm, is designed
to handle such scenarios.

o Combining Value and Policy Learning: A2C combines
the advantages of both value-based methods (e.g., Q-
learning) and policy-based methods. It maintains both a
value function (critic) and a policy (actor), allowing for
a more stable and efficient learning process

o Efficient Exploration-Exploitation Trade-off: A2C in-
cludes a mechanism to balance exploration and exploita-
tion. This is crucial for a mobile robot in an environment
where it needs to explore to discover optimal paths
but also exploit known information to achieve its goals
efficiently.

o Adaptability: A2C is adaptable to different types of prob-
lems and can handle continuous action spaces, making
it suitable for motion planning tasks where the robot’s
actions may be continuous.

C. Training of the Agent

The training process of the agent is illustrated below.

1) Increasing simulation speed: In general, RL is very
sample inefficient. Many time steps are needed to get the ideal
course of action. It therefore seems prudent to accelerate the
simulation time as much as feasible. The training algorithm
can handle more time steps in the same amount of time in this
way. Two world file parameters can be changed in Gazebo to
modify the simulation time:

o Max step size (default value: 0.001 seconds), determining

the time in the simulation to be simulated in one step

o Real time update rate (default value: 1000 Hz), which

determines the minimum time period after which the next
simulation step is triggered.
But you can’t keep raising this parameter indefinitely. It’s
obvious that the algorithm’s computational effort is limited

by the amount of processing power the computer can handle.
Our initial attempt at parameter adjustment resulted in a 15x
quicker training pace for the first agent, with the maximum
step size increased to 0.05 seconds and the real-time update
rate to 3000 Hz. Moreover, the graphics output was disabled
during training using a special Gazebo start file in order to
lower the computational load on the system.

Ubuntu 22.04 LTS is installed on the machine that runs the
training algorithm, a 12th Gen Intel® CoreTM i9-12900H x
20 with 16 GB of RAM.

2) Training on a simplified environment: To assess the effi-
cacy of the chosen reward function, a simplified environment
with no LIDAR samples was analyzed at the start of the
training phase. The goal of such a simplified setup is to debug
undesirable behaviors in the Gym environment and ensure that
the chosen reward function results in the desired policy. Later,
more complexity can be added to the problem so that more
sophisticated agents can be trained. The changes made for the
simplified environment are listed below.

o The observation space contains only the polar coordinates
of the target (r, 67, FA) relative to the robot.

 An episode ends if the robot reaches the target (r > 0.4)
or if it goes 3.5 meters farther than the target (r > 3.5),
creating a navigation limit.
The reward function only returns 1 when the robot
reaches the target, in all the other cases it returns O.

The maximum number of steps is set to 1000 timesteps before
beginning the training process. Given that the agent can travel
up to 0.1 meters in a single step and that the agent is placed 3
meters away from the obstacle, the robot could complete the
task in as few as 30 steps. As a result, 1000 steps per episode
are more than enough to complete the task successfully.

It has been observed that the trained robot’s behavior
corresponds to intuition. In fact, the agent points directly to the
target and arrives there without changing direction. All of this
is evidence that the reward function selected can effectively
lead to the desired policy. The following step is to train an
agent by incorporating laser readings into the state.

3) Training for the standard task: The objective is to train
an agent that can do the earlier described task, in which laser
readings are additionally included in the state and a collision
results in a negative reward. At this point, the procedure is
broken down into multiple phases where the task’s complexity
gradually rises. By doing this, it is ensured that the training
process is better understood and that any potential problems
are easier to find.

The results and graphs mentioned in the report are from
the first generation agent.Second-generation agent: We
are planning to train agent on a more heterogeneous set
of episodes that recognizes different patterns of obstacles
through its laser readings. Many different locations will
be defined during the Gym environment’s initialization by
specifying the coordinates of the initial robot position and
the target. Risk-seeker agent: We are planning to make
the robot less sensitive to far away obstacles, a different

Step Error default
learning rate | 0.0001177 | 0.0003
1 steps 5779 5048 eval/mean_reward I r1 3
gamma 0.9880615 | 0.99
clip range 0.1482 0.02
gae lambda 0.9435888 | 0.95
ent coef 0.0000968 | 0.0 06
vf coef 0.6330533 | 0.5
ABLET
HYPER-PARAMETERS FOR FIRST GENERATION AGENT
04
reward function will be defined for the Risk-seeker agent. 02
0 M 4M 6M BM 1OM 12N
i
Run + Smoothed Value Step Relative
eval 2 cards PPO_test 0 0.772 078 12,200,000 8.436 hr
eval/mean_ep_length I o3 “

400 Fig. 7. Mean Reward for Complex Environment - PPO

300

eval/mean_ep_length I r1 3
200 150
k 100k 150K 200k 25
e
Run + Smoothed Value St 100
PPO_simplified_env_1000TS_0_0 122.3804 732 25
s
i 50
a M 4M &M M 10M 12N
=3
Fig. 5. Mean Episode Length for Simplified Environment Run + Smoothed ~ Value Step Relative
PPO_test_0 47.668 43125 12,200,000 8.436hr
i
eval/mean_reward O . . .
¥ Fig. 8. Mean Episode Length for complex Environment - PPO
08
. IV. APPLICATIONS
06 19 Mobile Robots in Healthcare: Robots used in healthcare
os settings for tasks like medication delivery and patient as-
sistance can benefit from RL-based navigation to ensure
04 safe and precise movement in clinical environments.
K 100k 150k 200k 25 2) Warehouse Automation: Autonomous robots in ware-
.
smoothed value Step Relative houses and fulfillment centers use RL to efficiently
|env_1000TS.00 09063] 250,000 41.42 min navigate and pick items from shelves, optimizing the

logistics process.

3) Autonomous Vehicles: Self-driving cars and autonomous
drones use reinforcement learning for navigation. These
vehicles learn to make decisions like lane changes, speed

Fig. 6. Mean Reward for Simplified Environment adjustments, and avoiding obstacles based on sensory

data from cameras, LIDAR, and other sensors.

eval 2 cards

eval/mean_ep_length I
300
250
200
150
0 M am &M 8M
3
Run + Smoothed Value Step Relative
AZC_m2_r7_0 299999 300 8,400,000 5.312hr

Fig. 9. Mean Episode Length for complex Environment - A2C

eval/mean_reward 1;-"- o

0
02
04
0.6
0.8

0 2M M &M &M
#

Run + Smoothed Value Step Relative
A2C_m2_r7 0 0 0 8,400,000 5.312hr

Fig. 10. Mean Episode Length for complex Environment - A2C

V. RESULT

We discuss the short ranger path planning results here for
PPO and A2C. In-case of PPO in training performance we
got mean reward more than 0.8 as shown in the Fig. 7 for the
simplified environment and the mean episode length converged
to 73.2, which states that agent was successful in not only
planning the path from spawn location to designated goal
location but also finding the optimum path eventually.

For complex environment the PPO algorithm, initially for 5
million training steps gave unsatisfactory results of 0.4 rewards
but after around 6 million training steps the agent showed good
rise in the reward and after 12 million training steps final
reward was of 0.78 and mean episode length converged to 43,

which was better than the result from simplified environment.
This demonstrates that with more number of training steps
this algorithm can perform better with finding optimum path
between start to goal. Which illustrates that PPO is suitable
for short range path planning application.

On the other hand, A2C has not shown promising results
in terms of planning path to goal location though the agent
learned to prolong the episode length and navigate in the
environment avoiding obstacles. Fig. 9 shows that the mean
episode length value was 300 (the maximum episode length)
after the 8.4 million training steps and the reward which was
initially negative till 3 million steps converged to O reward.
The potential reason can be the sparse reward of attaining
goal. The inference is supported by simulation as well.

VI. CONCLUSION

We designed two environments - a simplified and a complex
one, with the later featuring more obstacles than the former.
In our experiments, the Proximal Policy Optimization with
Clip (PPO-Clip) algorithm demonstrated superior performance
compared to the Advantage Actor-Critic (A2C) algorithm in
both environments.

VII. FUTURE SCOPE

Enhancing the agent’s performance could be achieved
through refining the reward function to be more specific or by
incorporating a more diverse range of episodes in the training
setting. However, owing to the constraints of the present study,
additional research is necessary to pinpoint an optimal learning
environment configuration.

REFERENCES

[1] Faust, A., Ramirez, O., and Fiser, M., “PRM-RL: Long-
range Robotic Navigation Tasks by Combining Re-
inforcement Learning and Sampling-based Planning,”
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2018, arXiv:1710.03937, Nov 2017.

[2] Tai, L., Paolo, G., and Liu, M., “Virtual-to-real deep
reinforcement learning: Continuous control of mobile
robots for mapless navigation,” 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), Sep 2017.

[3] Pfeiffer, M., Schaeuble, M., and Nieto, J., “From Per-
ception to Decision: A Data-driven Approach to End-to-
end Motion Planning for Autonomous Ground Robots,”
2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017.

[4] Tzeng, E., Devin, C., and Hoffman, J., “Adapting
Deep Visuomotor Representations with Weak Pairwise
Constraints,” under submission, arXiv:1511.07111, May
2017.

[5] Schulman J., Wolski F., Dhariwal P., Radford A.,
Klimov O., “Proximal Policy Optimization Algo-
rithms”, https://arxiv.org/abs/1707.06347v2.

[6] V. Mnih, A. Puigdomenech Badia, M. Mirza, A. Graves,
T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous Methods for Deep Reinforcement
Learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

